返学费网 > 培训机构 > 全国IT培训中心

13081913316

全国统一学习专线 8:30-21:00

嵌入式Linux开发流程

在一个嵌入式系统中使用Linux开发,根据应用需求的不同有不同的配置开发方法,但是一般都要经过如下的过程:
1.建立开发环境
操作系统一般使用RedHat-Linux,版本从7到9都可以,选择定制安装或全部安装,通过网络下载相应的GCC交叉编译器进行安装(例如arm-Linux-gcc、arm-μclibc-gcc),或者安装产品厂家提供的交叉编译器。
2.配置开发主机
配置MINICOM,一般的参数为波特率为115 200bps,数据位为8位,停止位为1,无奇偶校验,软件硬件流控设为无。在Windows下的超级终端的配置也是这样的。MINICOM软件的作用是作为调试嵌入式开发板的信息输出的监视器和键盘输入的工具。配置网络,主要是配置NFS网络文件系统,需要关闭防火墙,简化嵌入式网络调试环境设置过程。
3.建立引导装载程序
从网络上下载一些公开源代码的,如U-BOOT、BLOB、VIVI、LILO、ARM-BOOT、RED-BOOT等,根据自己具体的芯片进行移植修改。有些芯片没有内置引导装载程序,例如三星的ARM7、ARM9系列芯片,这样就需要编写开发板上Flash的烧写程序,网络上有免费下载的Windows下通过JTAG并口简易仿真器烧写ARM外围Flash芯片的烧写程序,也有Linux下的公开源代码的J-Flash程序。如果不能烧写自己的开发板,就需要根据自己的具体电路进行源代码修改。这是系统正常运行的第一步。如果购买了厂家的仿真器当然比较容易烧写Flash,这对于需要迅速开发自己产品的人来说可以极大地提高开发速度,但是其中的核心技术是无法了解的。
4.下载别人已经移植好的Linux操作系统
如μCLinux、ARM-Linux、PPC-Linux等,如果有专门针对所使用的CPU移植好的Linux操作系统那是再好不过的,下载后再添加自己的特定硬件的驱动程序,进行调试修改,对于带MMU的CPU可以使用模块方式调试驱动,对于μCLinux这样的系统则需编译进内核进行调试。
5.建立根文件系统
从下载使用BUSYBOX软件进行功能裁减,产生一个最基本的根文件系统,再根据自己的应用需要添加其他程序。默认的启动脚本一般都不会符合应用的需要,所以就要修改根文件系统中的启动脚本,它的存放位置位于/etc目录下,包括:/etc/init.d/rc.S、/etc/profile、/etc/.profile等,自动挂装文件系统的配置文件/etc/fstab,具体情况会随系统不同而不同。根文件系统在嵌入式系统中一般设为只读,需要使用mkcramfs、genromfs等工具产生烧写映像文件。
6.建立应用程序的Flash磁盘分区
一般使用JFFS2或YAFFS文件系统,这需要在内核中提供这些文件系统的驱动,有的系统使用一个线性Flash(NOR型)512KB~32MB,有的系统使用非线性Flash(NAND型)8~512MB,有的两个同时使用,需要根据应用规划Flash的分区方案。
7.开发应用程序
应用程序可以放入根文件系统中,也可以放入YAFFS、JFFS2文件系统中,有的应用不使用根文件系统,直接将应用程序和内核设计在一起,这有点类似于μCOS-II的方式。
8.烧写内核、根文件系统、应用程序
9.发布产品
《linux就该这么学》是一本不错的教程哦

嵌入式Linux系统开发模式

嵌入式系统通常为一个资源受限的系统。直接在嵌入式系统的硬件平台上编写软件比较困难,有时甚至是不可能的。目前,一般采用的办法是,先在通用计算机上编写程序,然后,通过交叉编译,生成目标平台上可运行的二进制代码格式,最后下载到目标平台上的特定位置上运行,下面就由福州卓跃教育做具体步骤介绍。 
第一步,建立嵌入式Linux应用开发环境。目前,常用的交叉开发环境主要有开放和商业两种类型。开放的交叉开发环境的典型代表是GNU工具链,目前已经能够支持x86、ARM、MIPS、PowerPC等多种处理器。商业的交叉开发环境主要有 、ARM Software Toolkit、SDS Cross compiler、WindRiver Tornado、Microsoft Embedded Visual C++等。交叉开发环境是指编译、链接和调试嵌入式应用软件的环境。它与运行嵌入式应用软件的环境有所不同,通常采用宿主机/目标机模式。
第二步,交叉编译和链接。在完成嵌入式软件的编码之后,就是进行编译和链接,以生成可执行代码。由于开发过程大多是在Intel公司x86系列CPU的通用计算机上进行的,而目标环境的处理器芯片却大多为ARM、MIPS、PowerPC、等系列的微处理器,这就要求在建立好的交叉开发环境中进行交叉编译和链接。
第三步,交叉调试。
①硬件调试。如果不采用在线仿真器,可以让CPU直接在其内部实现调试功能,并通过在开发板上引出的调试端口,发送调试命令和接收调试信息,完成调试过程。目前,Motorola公司提供的开发板上使用的是DBM调试端口,而ARM公司提供的开发板上使用的则是JTAG调试端口。使用合适的软件工具与这些调试端口进行连接,可以获得与ICE类似的调试效果。
②软件调试。在嵌入式Linux应用开发系统中,Linux系统内核调试,可以先在Linux内核中设置一个调试桩(debug stub),用作调试过程中和宿主机之间的通信服务器。然后,可以在宿主机中通过调试器的串口与调试桩进行通信,并通过调试器控制目标机上Linux内核的运行。

如何在单linux下操作嵌入式开发板

开机后自动运行用户的应用程序或启动系统服务的命令保存在开发板根文件系统的/usr/etc/rc.local文件中。有的开发板开机后自动运行图形界面程序,需要按住ctrl+c让开发板进入到linux的shell提示符界面。其实可通过注释掉rc.local文件中调用图形界面的命令,增加运行用户应用程序的命令,达到开机自动运行用户应用程序的目的。
下面以我做的实验为例,描述具体的实现步骤。该方法源于网络,我加以验证,稍做修改,此文相当于转载。
1.进入pc机的linux
操作系统,在/nfs/usr/下通过mkdir
lz
命令新建一个名为lz的文件夹,进入lz文件夹,通过mkdir
hello新建一个hello文件夹用来存放我们将要编写的hello.c文件和编译生成的可执行文件。
2.在/nfs/usr/lz/hello下通过vi
hello.c命令新建hello.c文件,编辑如下测试程序:
#include
int
main(){
printf("hello,test
arm-linux!\n");
return
0;
}
完成编辑后通过:wq保存后退出。
3.主机通过如下命令交叉编译环境编译hello.c:
#arm-linux-gcc
–o
hello
hello.c
4.通过ls
命令可以看到在/nfs/usr/lz/hello/下已经生成了hello可执行文件,我们可以在开发板上通过./hello来测试自己编写的hello.c执行情况
5.修改rc.local文件,在文件的最后通过‘#’释掉启动图形界面的指令,增加执行用户应用程序hello的指令,具体实现如下:
#export
path=$qpedir/bin:$path
#qtopia
#/usr/qtopia/bin/qtopia
/usr/lz/hello/./hello
注:前三行是注释掉启动图形界面,最后一行是添加的执行用户的hello测试程序。
6.重启开发板,通过vivi参数配置让开发板通过nfs挂载主机上的文件系统,这时我们就可以通过超级终端看到开发板已经运行了我们编写的hello程序。

「干货」嵌入式Linux系统移植的四大步骤(上)


在学习系统移植的相关知识,在学习和调试过程中,发现了很多问题,也解决了很多问题,但总是对于我们的开发结果有一种莫名其妙的感觉,纠其原因,主要对于我们的开发环境没有一个深刻的认识,有时候几个简单的命令就可以完成非常复杂的功能,可是我们有没有想过,为什么会有这样的效果?


如果没有去追问,只是机械地完成,并且看到实验效果,这样做其实并没有真正的掌握系统移植的本质。


在做每一个步骤的时候, 首先问问自己,为什么要这样做,然后再问问自己正在做什么? 搞明白这几个问题,我觉得就差不多了,以后不管更换什么平台,什么芯片,什么开发环境,你都不会迷糊,很快就会上手。对于嵌入式的学习方法,我个人方法就是:从宏观上把握(解决为什么的问题),微观上研究(解决正在做什么的问题),下面以自己学习的arm-cortex_a8开发板为目标,介绍下自己的学习方法和经验。


嵌入式Linux系统移植主要由四大部分组成:


一、搭建交叉开发环境
二、的选择和移植
三、kernel的配置、编译、和移植
四、根文件系统的制作


第一部分:搭建交叉开发环境


先介绍第一分部的内容:搭建交叉开发环境,首先必须得思考两个问题,什么是交叉环境? 为什么需要搭建交叉环境?


先回答第一个问题,在嵌入式开发中,交叉开发是很重要的一个概念,开发的第一个环节就是搭建环境,第一步不能完成,后面的步骤从无谈起,这里所说的交叉开发环境主要指的是:在开发主机上(通常是我的pc机)开发出能够在目标机(通常是我们的开发板)上运行的程序。嵌入式比较特殊的是不能在目标机上开发程序(狭义上来说),因为对于一个原始的开发板,在没有任何程序的情况下它根本都跑不起来,为了让它能够跑起来,我们还必须要借助pc机进行烧录程序等相关工作,开发板才能跑起来,这里的pc机就是我们说的开发主机,想想如果没有开发主机,我们的目标机基本上就是无法开发,这也就是电子行业的一句名言:搞电子,说白了,就是玩电脑!


然后回答第二个问题,为什么需要交叉开发环境?主要原因有以下几点:


原因 1: 嵌入式系统的硬件资源有很多限制,比如cpu主频相对较低,内存容量较小等,想想让几百MHZ主频的MCU去编译一个Linux kernel会让我们等的不耐烦,相对来说,pc机的速度更快,硬件资源更加丰富,因此利用pc机进行开发会提高开发效率。


原因2: 嵌入式系统MCU体系结构和指令集不同,因此需要安装交叉编译工具进行编译,这样编译的目标程序才能够在相应的平台上比如:ARM、MIPS、 POWEPC上正常运行。


交叉开发环境的硬件组成主要由以下几大部分


1.开发主机
2.目标机(开发板)
3.二者的链接介质,常用的主要有3种方式:(1)串口线 (2)USB线 (3)网线


对应的硬件介质,还必须要有相应的软件“介质”支持:


1.对于串口,通常用的有串口调试助手,putty工具等,工具很多,功能都差不多,会用一两款就可以;


2.对于USB线,当然必须要有USB的驱动才可以,一般芯片公司会提供,比如对于三星的芯片,USB下载主要由DNW软件来完成;


3.对于网线,则必须要有网络协议支持才可以, 常用的服务主要两个


第一:tftp服务:

主要用于实现文件的下载,比如开发调试的过程中,主要用tftp把要测试的、kernel和文件系统直接下载到内存中运行,而不需要预先烧录到Flash芯片中,一方面,在测试的过程中,往往需要频繁的下载,如果每次把这些要测试的文件都烧录到Flash中然后再运行也可以,但是缺点是:过程比较麻烦,而且Flash的擦写次数是有限的;另外一方面:测试的目的就是把这些目标文件加载到内存中直接运行就可以了,而tftp就刚好能够实现这样的功能,因此,更没有必要把这些文件都烧录到Flash中去。


第二: nfs服务:

主要用于实现网络文件的挂载,实际上是实现网络文件的共享,在开发的过程中,通常在系统移植的最后一步会制作文件系统,那么这是可以把制作好的文件系统放置在我们开发主机PC的相应位置,开发板通过nfs服务进行挂载,从而测试我们制作的文件系统是否正确,在整个过程中并不需要把文件系统烧录到Flash中去,而且挂载是自动进行挂载的,bootload启动后,kernel运行起来后会根据我们设置的启动参数进行自动挂载,因此,对于开发测试来讲,这种方式非常的方便,能够提高开发效率。


另外,还有一个名字叫 samba 的服务也比较重要,主要用于文件的共享,这里说的共享和nfs的文件共享不是同一个概念,nfs的共享是实现网络文件的共享,而samba实现的是开发主机上 Windows主机和Linux虚拟机之间的文件共享,是一种跨平台的文件共享 ,方便的实现文件的传输。


以上这几种开发的工具在嵌入式开发中是必备的工具,对于嵌入式开发的效率提高做出了伟大的贡献,因此,要对这几个工具熟练使用,这样你的开发效率会提高很多。等测试完成以后,就会把相应的目标文件烧录到Flash中去,也就是等发布产品的时候才做的事情,因此对于开发人员来说,所有的工作永远是测试。


通过前面的工作,我们已经准备好了交叉开发环境的硬件部分和一部分软件,最后还缺少交叉编译器,读者可能会有疑问,为什么要用交叉编译器?前面已经讲过,交叉开发环境必然会用到交叉编译工具,通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上的程序,开发主机PC平台(X86 CPU)上编译出能运行在以ARM为内核的CPU平台上的程序,编译得到的程序在X86 CPU平台上是不能运行的,必须放到ARM CPU平台上才能运行,虽然两个平台用的都是Linux系统。相对于交叉编译,平常做的编译叫本地编译,也就是在当前平台编译,编译得到的程序也是在本地执行。用来编译这种跨平台程序的编译器就叫交叉编译器,相对来说,用来做本地编译的工具就叫本地编译器。所以要生成在目标机上运行的程序,必须要用交叉编译工具链来完成。

这里又有一个问题,不就是一个交叉编译工具吗?为什么又叫交叉工具链呢?原因很简单,程序不能光编译一下就可以运行,还得进行汇编和链接等过程,同时还需要进行调试,对于一个很大工程,还需要进行工程管理等等,所以,这里 说的交叉编译工具是一个由 编译器、连接器和解释器 组成的综合开发环境,交叉编译工具链主要由binutils(主要包括汇编程序as和链接程序ld)、gcc(为GNU系统提供C编译器)和glibc(一些基本的C函数和其他函数的定义) 3个部分组成。有时为了减小libc库的大小,也可以用别的 c 库来代替 glibc,例如 uClibc、dietlibc 和 newlib。

那么,如何得到一个交叉工具链呢?是从网上下载一个“程序”然后安装就可以使用了吗?回答这个问题之前先思考这样一个问题,我们的交叉工具链顾名思义就是在PC机上编译出能够在我们目标开发平台比如ARM上运行的程序,这里就又有一个问题了,我们的ARM处理器型号非常多,难道有专门针对我们某一款的交叉工具链吗?若果有的话,可以想一想,这么多处理器平台,每个平台专门定制一个交叉工具链放在网络上,然后供大家去下载,想想可能需要找很久才能找到适合你的编译器,显然这种做法不太合理,且浪费资源!因此,要得到一个交叉工具链,就像我们移植一个Linux内核一样,我们只关心我们需要的东西,编译我们需要的东西在我们的平台上运行,不需要的东西我们不选择不编译,所以,交叉工具链的制作方法和系统移植有着很多相似的地方,也就是说,交叉开发工具是一个支持很多平台的工具集的集合(类似于Linux源码),然后我们只需从这些工具集中找出跟我们平台相关的工具就行了,那么如何才能找到跟我们的平台相关的工具,这就是涉及到一个如何制作交叉工具链的问题了。


通常构建交叉工具链有如下三种方法:


方法一 : 分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。该方法相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用下列的方法二构建交叉工具链。


方法二: 通过Crosstool-ng脚本工具来实现一次编译,生成交叉编译工具链,该方法相对于方法一要简单许多,并且出错的机会也非常少,建议大多数情况下使用该方法构建交叉编译工具链。


方法三 : 直接通过网上下载已经制作好的交叉编译工具链。该方法的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的,没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名其妙的错误,建议读者慎用此方法。

crosstool-ng是一个脚本工具,可以制作出适合不同平台的交叉编译工具链,在进行制作之前要安装一下软件:
$ sudo apt-get install g++ -dev bison flex texinfo automake libtool patch gcj cvs cvsd gawk
crosstool脚本工具可以在 1. 设定源码包路径和交叉编译器的安装路径
2. 修改交叉编译器针对的构架

3. 增加编译时的并行进程数,以增加运行效率,加快编译,因为这个编译会比较慢。
4. 关闭JAVA编译器 ,减少编译时间
5. 编译
6. 添加环境变量
7. 刷新环境变量。
8. 测试交叉工具链

到此,嵌入式Linux系统移植四大部分的第一部分工作全部完成,接下来可以进行后续的开发了。



第二部分:的选择和移植


01 Boot Loader 概念


就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境,他就是所谓的引导加载程序(Boot Loader)。


02 为什么系统移植之前要先移植?


的任务是引导操作系统,所谓引导操作系统,就是启动内核,让内核运行就是把内核加载到内存RAM中去运行,那先问两个问题:第一个问题,是谁把内核搬到内存中去运行?第二个问题:我们说的内存是SDRAM,大家都知道,这种内存和SRAM不同,最大的不同就是SRAM只要系统上电就可以运行,而SDRAM需要软件进行初始化才能运行,那么在把内核搬运到内存运行之前必须要先初始化内存吧,那么内存是由谁来初始化的呢?其实这两件事情都是由来干的,目的是为内核的运行准备好软硬件环境,没有bootloadr我们的系统当然不能跑起来。

03 的分类


首先更正一个错误的说法,很多人说就是U-boot,这种说法是错误的,确切来说是u-boot是的一种。也就是说具有很多种类,


由上图可以看出,不同的具有不同的使用范围,其中最令人瞩目的就是有一个叫U-Boot的,是一个通用的引导程序,而且同时支持X86、ARM和PowerPC等多种处理器架构。U-Boot,全称 Universal Boot Loader,是遵循GPL条款的开放源码项目,是由德国DENX小组开发的用于多种嵌入式CPU的程序,对于Linux的开发,德国的u-boot做出了巨大的贡献,而且是开源的。

u-boot具有以下特点:

① 开放源码;
② 支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS;
③ 支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale;
④ 较高的可靠性和稳定性;
⑤ 高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等;
⑥ 丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等;
⑦ 较为丰富的开发调试文档与强大的网络技术支持;
其实,把u-boot可以理解为是一个小型的操作系统。

04 u-boot的目录结构


* board 目标板相关文件,主要包含SDRAM、FLASH驱动;
* common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;
* cpu 与处理器相关的文件。如mpc8xx子目录下含串口、网口、LCD驱动及中断初始化等文件;
* driver 通用设备驱动,如CFI FLASH驱动(目前对INTEL FLASH支持较好)
* doc U-Boot的说明文档;
* examples可在U-Boot下运行的示例程序;如hello_world.c,timer.c;
* include U-Boot头文件;尤其configs子目录下与目标板相关的配置头文件是移植过程中经常要修改的文件;
* lib_xxx 处理器体系相关的文件,如lib_ppc, lib_arm目录分别包含与PowerPC、ARM体系结构相关的文件;
* net 与网络功能相关的文件目录,如bootp,nfs,tftp;
* post 上电自检文件目录。尚有待于进一步完善;
* rtc RTC驱动程序;
* tools 用于创建U-Boot S-RECORD和BIN镜像文件的工具;

05 u-boot的工作模式


U-Boot的工作模式有 启动加载模式和下载模式 。启动加载模式是的正常工作模式,嵌入式产品发布时,必须工作在这种模式下,将嵌入式操作系统从FLASH中加载到SDRAM中运行,整个过程是自动的。 下载模式 就是通过某些通信手段将内核映像或根文件系统映像等从PC机中下载到目标板的SDRAM中运行,用户可以利用提供的一些令接口来完成自己想要的操作,这种模式主要用于测试和开发。

06 u-boot的启动过程


大多数都分为stage1和stage2两大部分,U-boot也不例外。依赖于cpu体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。


1、 stage1(start.s代码结构)
U-boot的stage1代码通常放在start.s文件中,它用汇编语言写成,其主要代码部分如下:
(1) 定义入口。由于一个可执行的image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在rom(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。
(2)设置异常向量(exception vector)。
(3)设置CPU的速度、时钟频率及中断控制寄存器。
(4)初始化内存控制器 。
(5)将rom中的程序复制到ram中。
(6)初始化堆栈 。
(7)转到ram中执行,该工作可使用指令ldrpc来完成。


2、 stage2(C语言代码部分)

lib_arm/board.c中的start armboot是C语言开始的函数,也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数主要完成如下操作:
(1)调用一系列的初始化函数。
(2)初始化flash设备。
(3)初始化系统内存分配函数。
(4)如果目标系统拥有nand设备,则初始化nand设备。
(5)如果目标系统有显示设备,则初始化该类设备。
(6)初始化相关网络设备,填写ip,c地址等。
(7)进入命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。

07 基于cortex-a8的启动过程分析


s5pc100支持两种启动方式,分别为USB启动方式和NandFlash启动方式:


1. S5PC100 USB启动过程

[1] A8 reset, 执行iROM中的程序
[2] iROM中的程序根据S5PC100的配置管脚(SW1开关4,拨到4对面),判断从哪里启动(USB)
[3] iROM中的程序会初始化USB,然后等待PC机下载程序
[4] 利用DNW程序,从PC机下载SDRAM的初始化程序到iRAM中运行,初始化SDRAM
[5] SDRAM初始化完毕,iROM中的程序继续接管A8, 然后等待PC下载程序()
[6] PC利用DNW下载到SDRAM
[7] 在SDRAM中运行

2. S5PC100 Nandflash启动过程

[1] A8 reset, 执行IROM中的程序
[2] iROM中的程序根据S5PC100的配置管脚(SW1开关4,拨到靠4那边),判断从哪里启动(Nandflash)
[3] iROM中的程序驱动Nandflash
[4] iROM中的程序会拷贝Nandflash前16k到iRAM
[5] 前16k的程序(前半部分)初始化SDRAM,然后拷贝完整的到SDRAM并运行
[6] 拷贝内核到SDRAM,并运行它
[7] 内核运行起来后,挂载rootfs,并且运行系统初始化脚本

08 u-boot移植(基于cortex_a8的s5pc100为例)


1.建立自己的平台

(1).下载源码包2010.03版本,比较稳定
(2).解压后添加我们自己的平台信息,以smdkc100为参考版,移植自己s5pc100的开发板
(3).修改相应目录的文件名,和相应目录的Makefile,指定交叉工具链。
(4).编译
(5).针对我们的平台进行相应的移植,主要包括修改SDRAM的运行地址,从
(6).“开关”相应的宏定义
(7).添加Nand和网卡的驱动代码
(8).优化go命令
(9).重新编译 make distclean(彻底删除中间文件和配置文件) make s5pc100_config(配置我们的开发板) make(编译出我们的u-boot.bin镜像文件)
(10).设置环境变量,即启动参数,把编译好的u-boot下载到内存中运行,过程如下:
1. 配置开发板网络
ip地址配置:
$setenv ipaddr 192.168.0.6 配置ip地址到内存的环境变量
$saveenv 保存环境变量的值到nandflash的参数区

网络测试:
在开发开发板上ping虚拟机:
$ ping 192.168.0.157(虚拟机的ip地址)

如果网络测试失败,从下面几个方面检查网络:
1. 网线连接好
2. 开发板和虚拟机的ip地址是否配置在同一个网段
3. 虚拟机网络一定要采用桥接(VM--Setting-->option)
4. 连接开发板时,虚拟机需要设置成 静态ip地址

2. 在开发板上,配置tftp服务器(虚拟机)的ip地址
$setenv serverip 192.168.0.157(虚拟机的ip地址)
$saveenv
3. 拷贝u-boot.bin到/tftpboot(虚拟机上的目录)
4. 通过tftp下载u-boot.bin到开发板内存
$ tftp 20008000(内存地址即可) u-boot.bin(要下载的文件名)

如果上面的命令无法正常下载:
1. serverip配置是否正确
2. tftp服务启动失败,重启tftp服务
#sudo service tftpd-hpa restart

5. 烧写u-boot.bin到nandflash的0地址
$nand erase 0(起始地址) 40000(大小) 擦出nandflash 0 - 256k的区域
$nand write 20008000((缓存u-boot.bin的内存地址) 0(nandflash上u-boot的位置) 40000(烧写大小)

6. 切换开发板的启动方式到nandflash
1. 关闭开发板
2. 把SW1的开关4拨到4的那边
3. 启动开发板,它就从nandflash启动

温馨提示:为不影响您的学业,来校区前请先电话咨询,方便我校安排相关的专业老师为您解答
  • 热门课程
  • 作者最新文章
  • 在线报名
申请试听课程

只要一个电话
我们免费为您回电

姓名不能为空
手机号格式错误